ROUTERA


Chapter 10 DIFFRENTIABILITY

Class 12th Maths R D Sharma Solution


Access Answers to Maths RD Sharma Solutions for Class 12 Chapter 10 – Differentiability

Exercise 10.1 Page No: 10.10

1. Show that f (x) = |x – 3| is continuous but not differentiable at x = 3.

Solution:

RD Sharma Solutions for Class 12 Maths Chapter 10 Differentiablity Image 1
RD Sharma Solutions for Class 12 Maths Chapter 10 Differentiablity Image 2

2. Show that f (x) = x 1/3 is not differentiable at x = 0.

Solution:

RD Sharma Solutions for Class 12 Maths Chapter 10 Differentiablity Image 3
RD Sharma Solutions for Class 12 Maths Chapter 10 Differentiablity Image 4

Since, LHD and RHD does not exist at x = 0

Hence, f(x) is not differentiable at x = 0

RD Sharma Solutions for Class 12 Maths Chapter 10 Differentiablity Image 5

Solution:

Now we have to check differentiability of given function at x = 3

That is LHD (at x = 3) = RHD (at x = 3)

RD Sharma Solutions for Class 12 Maths Chapter 10 Differentiablity Image 6

= 12

Since, (LHD at x = 3) = (RHD at x = 3)

Hence, f(x) is differentiable at x = 3.

4. Show that the function f is defined as follows

RD Sharma Solutions for Class 12 Maths Chapter 10 Differentiablity Image 7

Is continuous at x = 2, but not differentiable thereat.

Solution:

RD Sharma Solutions for Class 12 Maths Chapter 10 Differentiablity Image 8

Since, LHL = RHL = f (2)

Hence, F(x) is continuous at x = 2

Now we have to differentiability at x = 2

RD Sharma Solutions for Class 12 Maths Chapter 10 Differentiablity Image 9

= 5

Since, (RHD at x = 2) ≠ (LHD at x = 2)

Hence, f (2) is not differentiable at x = 2.

5. Discuss the continuity and differentiability of the function f (x) = |x| + |x -1| in the interval of (-1, 2).

Solution:

RD Sharma Solutions for Class 12 Maths Chapter 10 Differentiablity Image 10

We know that a polynomial and a constant function is continuous and differentiable everywhere. So, f(x) is continuous and differentiable for x ∈

(-1, 0) and x ∈ (0, 1) and (1, 2).

We need to check continuity and differentiability at x = 0 and x = 1.

Continuity at x = 0

RD Sharma Solutions for Class 12 Maths Chapter 10 Differentiablity Image 11

Since, f(x) is continuous at x = 1

Now we have to check differentiability at x = 0

For differentiability, LHD (at x = 0) = RHD (at x = 0)

Differentiability at x = 0

RD Sharma Solutions for Class 12 Maths Chapter 10 Differentiablity Image 12

Since, (LHD at x = 0) ≠ (RHD at x = 0)

So, f(x) is differentiable at x = 0.

Now we have to check differentiability at x = 1

For differentiability, LHD (at x = 1) = RHD (at x = 1)

Differentiability at x = 1

RD Sharma Solutions for Class 12 Maths Chapter 10 Differentiablity Image 13

Since, f(x) is not differentiable at x = 1.

So, f(x) is continuous on (- 1, 2) but not differentiable at x = 0, 1

Exercise 10.2 Page No: 10.16

1. If f is defined by f (x) = x2, find f’ (2).

Solution:

RD Sharma Solutions for Class 12 Maths Chapter 10 Differentiablity Image 14

2. If f is defined by f (x) = x2 – 4x + 7, show that f’ (5) = 2 f’ (7/2)

Solution:

RD Sharma Solutions for Class 12 Maths Chapter 10 Differentiablity Image 15
RD Sharma Solutions for Class 12 Maths Chapter 10 Differentiablity Image 16

Hence the proof.

3. Show that the derivative of the function f is given by f (x) = 2x3 – 9x2 + 12 x + 9, at x = 1 and x = 2 are equal.

Solution:

We are given with a polynomial function f(x) = 2x3 – 9x2 + 12x + 9, and we have

RD Sharma Solutions for Class 12 Maths Chapter 10 Differentiablity Image 17

4. If for the function Ø (x) = λ x2 + 7x – 4, Ø’ (5) = 97, find λ.

Solution:

We have to find the value of λ given in the real function and we are given with the differentiability of the function f(x) = λx2 + 7x – 4 at x = 5 which is f ‘(5) = 97, so we will adopt the same process but with a little variation.

RD Sharma Solutions for Class 12 Maths Chapter 10 Differentiablity Image 18

5. If f (x) = x3 + 7x2 + 8x – 9, find f’ (4).

Solution:

We are given with a polynomial function f(x) = x3 + 7x2 + 8x – 9, and we have to find whether it is derivable at x = 4 or not,

RD Sharma Solutions for Class 12 Maths Chapter 10 Differentiablity Image 19
RD Sharma Solutions for Class 12 Maths Chapter 10 Differentiablity Image 20

6. Find the derivative of the function f defined by f (x) = mx + c at x = 0.

Solution:

We are given with a polynomial function f(x) = mx + c, and we have to find whether it is derivable at x = 0 or not,

RD Sharma Solutions for Class 12 Maths Chapter 10 Differentiablity Image 21

This is the derivative of a function at x = 0, and also this is the derivative of this function at every value of x.