L.H.S = sin4θ - cos4θ
= (sin2θ)2 - (cos2θ)2
= (sin2θ - cos2θ) (sin2θ + cos2θ) … ∵ a2 - b2 = (a - b)(a + b)
= 1 (sin2θ - cos2θ) …. ∵ sin2θ + cos2θ = 1
= 1 - cos2θ - cos2θ …. ∵ sin2θ = 1 - cos2θ
= 1 - 2 cos2θ
= R.H.S
Hence proved.
Hence proved.
Hence proved.
Hence proved.
Hence proved.
L.H.S = sec4 θ - tan4 θ
= (sec2 θ)2 - (tan2 θ)2
= (sec2 θ - tan2 θ) (sec2 θ + tan2 θ)
= 1 × (sec2 θ + tan2 θ) …. ∵ sec2 θ - tan2 θ = 1
= 1 + tan2 θ + tan2 θ …. ∵ sec2 θ = 1 + tan2 θ
= 1 + 2 tan2 θ
= R.H.S
Hence proved.
Hence proved.
∵ L.H.S = R.H.S
Hence proved.
∵ L.H.S = R.H.S
⇒ sin2 θ tan θ + cos2 θ cot θ + 2 sin θ cos θ = tan θ + cot θ
Hence proved.
Hence proved.
∵ L.H.S = R.H.S
⇒
Hence proved.
∵ L.H.S = R.H.S
∵ L.H.S = R.H.S
Hence proved.
Hence proved.
Hence proved.
Hence proved.
From (1) and (2), we get
L.H.S =
= 1 - sin θ cos θ + 1 + sin θ cos θ
= 2
= R.H.S
Hence proved.
Hence proved.
Hence proved.
Hence proved.
Hence proved.
Hence proved.
Now,
We have,
x = (sec A + sin A) and y = (sec A - sin A)
⇒ x + y = 2 sec A ⇒ sec A = ⇒ cos A = …. (1)
And x - y = 2 sin A ⇒ sin A = ….. (2)
Hence proved.
Hence proved.
We know that,
sec2 θ - tan2 θ = 1
⇒ (sec θ + tan θ) (sec θ - tan θ) = 1 … a2 - b2 = (a - b)(a + b)
⇒ p (sec θ - tan θ) = 1 …. ∵ (sec θ + tan θ) = p
⇒ (sec θ - tan θ) =
We have,
(sec θ + tan θ) = p …. (1) and (sec θ - tan θ) = …. (2)
Adding (1) and (2), we get
2 sec θ = ⇒ cos θ = …. (3)
Subtracting (2) from (1), we get
2 tan θ =
⇒ tan θ
Hence proved.
Hence proved.
Now,
Correct Option: (c)
Correct Option: (d)
Correct Option: (b)
sin θ - cos θ = 0 …. Given
⇒ (sin θ - cos θ)2 = sin2 θ + cos2 θ - 2 sin θ cos θ
⇒ 0 = 1 - 2 sin θ cos θ …. ∵ sin2 θ + cos2 θ = 1
⇒ 2 sin θ cos θ = 1
⇒ sin θ cos θ =
⇒ sin2 θ cos2 θ =
∴ sin4 θ + cos4 θ
= (sin2 θ + cos2 θ)2 - 2 sin2 θ cos2 θ
=
Correct Option: (c)
cos 9α = sin α
⇒ sin(90˚- 9α) = sin α
∴ 90˚- 9α = α ⇒ 10α = 90˚ ⇒ α = 9˚
∴ tan 5α = tan 5(9˚) = tan 45˚ = 1
Correct Option: (d)
Correct option: (a)
Correct Option: (b)
Correct option: (a)
Correct Option: (a)
cosec2 θ = 1 + cot2 θ =
∴
Correct Option: (c)
Correct Option: (a)
In a ∆ABC, ∠C = 90˚ ⇒ ∠A + ∠B = 90˚
∴ cos(A + B) = cos 90˚ = 0
Correct Option: (a)
We have, cos A + cos2 A = 1 … (1)
⇒ cos A = 1 - cos2 A = sin2 A ⇒ sin4 A = cos2 A
∴ (sin2 A + sin4 A) = cos A + cos2 A = 1 …from (1)
Correct option: (c)
We know that
cosec2 x - cot2 x = 1